

COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the course	4606-ES-DEGIKLP-0282	Name of the course	Polish	Zastosowanie krystalograficznych baz danych w analizie i projektowaniu różnych materiałów funkcyjonalnych, katalizatorów i produktów farmaceutycznych			
			English	Application of crystallographic database in the analysis and design of various functional materials, catalysts and pharmaceutical products			
Type of the course	Special courses						
Course coordinator	dr hab. inż. Izabela Madura, prof. WUT		Course teacher	dr hab. inż. Izabela Madura, prof. WUT			
Implementing unit	Faculty of Chemistry	Scientific discipline / disciplines*	Chemical sciences, Physical sciences, Chemical engineering, Materials engineering, Biomedical engineering, Biotechnology, Environmental engineering, mining and energy, biotechnology				
Level of education	Doctoral studies	Semester	Summer				
Language of the course	English						
Type of assessment	Pass for assessment - final project with presentation	Number of hours in a semester	45	ECTS credits	3		
Minimum number of participants	10	Maximum number of participants	24	Available for students (BSc, MSc)	Yes/No		
Type of classes	Lecture	Auditory classes	Project classes	Laboratory	Seminar		
Number of hours	in a week	1		1			
	in a semester	15		15			

* does not apply to the Researcher's Workshop

1. Prerequisites

General knowledge of the structure of matter or chemistry

2. Course objectives

The aim of the course is to familiarize students with the Cambridge Structural Database (CSD) and its integrated data analysis tools.

The CSD is a database of fully curated and enhanced organic and metal-organic structures with software enabling drug discovery and design, protein-ligand docking algorithms, design and new materials development, evaluation of solid materials stability, prediction of crystallites' shape, void and pore analysis, catalysts and MOF analysis

3. Course content (separate for each type of classes)

Lecture

The lecture will cover the following topics:

- Basics of X-ray crystallography (symmetry, group theory, X-ray diffraction theory, X-ray diffraction techniques and their main applications)
- Basics of chemical bonds and intermolecular interactions (basic concepts with quantum chemistry elements)
- Importance of knowledge of crystal structures in selected industrial applications
- Overview of crystallographic databases and crystallographic information file formats
- Presentation of the CSD-Core and specialized functionalities of CSD-Materials, CSD-Discovery and CSD-Particles

Laboratory

During the laboratory classes, students will solve on their own (or in pairs) problems prepared so that they can master the basic functionalities of the CSD database. The tasks will be optimized to the students' preliminary knowledge and area of interests

Project

Depending on the student's interest, the project will require the use one of the CSD-Core, CSD-Materials, CSD-Discovery or CSD-Particles modules at the intermediate or advanced level. The tasks will be discussed with students, aiming for their engagement in the real scientific problems solving. If the group is numerous, the pair or group projects will be regarded.

4. Learning outcomes

Type of learning outcomes	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*
Knowledge			
K01	Student has knowledge of discovering problems in her/his area of interest regarding the use of the solid forms of matter	SD_W1	Project evaluation
K02	Student has theoretical knowledge of X-ray crystallography and bond theory	SD_W2	Project evaluation
K03	Student has knowledge about the use of crystallographic databases in the scientific discipline being pursued and the related research methodologies	SD_W3	Project evaluation
Skills			
S01	Student has ability of use crystallographic databases in the field of her/his interest	SD_U1	Project evaluation
S02	Student has ability to select a research methodology depending on the analyzed materials	SD_U2	Project evaluation
S03	Student is capable of planning and implementing a knowledge discovery process as well as of interpreting its results	SD_U4	Project evaluation
S04	Student is improving teamwork skills	SD_U7	Project evaluation
Social competences			
SC01	Student is thinking and acting in a creative and entrepreneurial way	SD_K4	Project evaluation
SC02	Presentation of own concepts, analyses and guidelines and the ability to conduct an informed discussion in this area	SD_K2	Project evaluation

5. Assessment criteria

Preparing the tasks on the auditory classes and elaboration of the final topic related to selected area of interests which will be checked by lecturer and discussed the results with students (a presentation). Final mark will be given after discussion and correction of work by student.

6. Literature

Primary references:

- [1] Introduction to crystallography or Basics of X-ray crystallography – any book available
- [2] <https://www.ccdc.cam.ac.uk/>

Secondary references:

- [1] <https://www.youtube.com/c/CCDCCambridge>
- [2] <https://www.iucr.org/education/pamphlets>

7. PhD student's workload necessary to achieve the learning outcomes**

No.	Description	Number of hours
1	Hours of scheduled instruction given by the academic teacher in the classroom	30
2	Hours of consultations with the academic teacher, exams, tests, etc.	15
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	30
Total number of hours		75
ECTS credits		3

** 1 ECTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)

8. Additional information

Number of ECTS credits for classes requiring direct participation of academic teachers	2
Number of ECTS credits earned by a student in a practical course	1